
© Copyright Ian D. Romanick 2009

4-November-2009

VGP351 – Week 5

⇨ Agenda:
­ Quiz #2
­ Bounding volumes

­ Axis-aligned bounding boxes
­ Oriented bounding boxes
­ Bounding spheres

­ BV hierarchies
­ Portal culling

© Copyright Ian D. Romanick 2009

4-November-2009

Bounding Volumes

⇨ From Wikipedia:
“...a bounding volume for a set of objects is a closed
volume that completely contains the union of the
objects in the set.”

⇨ Why is this useful?

© Copyright Ian D. Romanick 2009

4-November-2009

Bounding Volumes

⇨ From Wikipedia:
“...a bounding volume for a set of objects is a closed
volume that completely contains the union of the
objects in the set.”

⇨ Why is this useful?
­ Can represent complex geometry that would be

expensive to test with an approximation that is much
cheaper to test

­ Visibility, collision detection, etc.

© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BV Characteristics

⇨ Inexpensive intersection test
­ BVs are used instead of source geometry to speed up

trivial rejection (or trivial acceptance) tests

© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BV Characteristics

⇨ Inexpensive intersection test
­ BVs are used instead of source geometry to speed up

trivial rejection (or trivial acceptance) tests

⇨ Tight fitting to source geometry
­ If the BV is a poor fit, tests between BVs may result in

false positives or false negatives

© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BV Characteristics

⇨ Inexpensive intersection test
­ BVs are used instead of source geometry to speed up

trivial rejection (or trivial acceptance) tests

⇨ Tight fitting to source geometry
­ If the BV is a poor fit, tests between BVs may result in

false positives or false negatives

⇨ Inexpensive to compute
­ If the BV is too expensive to compute, the expense of

creating it may cancel the speed-up that it provides

© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BV Characteristics

⇨ Easy to transform
­ If the object moves, its BV needs to move. If moving

the BV is too expensive, it may cancel out the speed-
up.

© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BV Characteristics

⇨ Easy to transform
­ If the object moves, its BV needs to move. If moving

the BV is too expensive, it may cancel out the speed-
up.

⇨ Inexpensive to store
­ If the BV requires too much space to store or too

much time to access, it can negatively impact
performance.

© Copyright Ian D. Romanick 2009

4-November-2009

Axis-Aligned Bounding Box

⇨ AABB is probably the most common bounding
volume

­ Just an n-dimensional box with sides parallel to the
principle axes that encloses all the points

© Copyright Ian D. Romanick 2009

4-November-2009

Axis-Aligned Bounding Box

© Copyright Ian D. Romanick 2009

4-November-2009

Axis-Aligned Bounding Box

⇨ Three common representations
­ Easy to translate between them
­ Which is used depends on the source data and the

usage of the BV

© Copyright Ian D. Romanick 2009

4-November-2009

Axis-Aligned Bounding Box

class aabb_min_max {
 // Points such that for every point P in the
 // object:
 // (min.x <= P.x <= max.x)
 // && (min.y <= P.y <= max.y)
 // && (min.z <= P.z <= max.z)
 point min;
 point max;
};

© Copyright Ian D. Romanick 2009

4-November-2009

Axis-Aligned Bounding Box

class aabb_min_diameter {
 // Points such that for every point P in the
 // object:
 // (min.x <= P.x)
 // && (min.y <= P.y)
 // && (min.z <= P.z)
 point min;

 // Dimensions of the box in each direction
 point diameter;
};

© Copyright Ian D. Romanick 2009

4-November-2009

Axis-Aligned Bounding Box

class aabb_center_radius {
 // Center of the bounding box
 point center;

 // Radius of the box in each direction
 point radius;
};

© Copyright Ian D. Romanick 2009

4-November-2009

AABB Creation

⇨ Trivial O(n) problem:
­ Scan all points tracking minimum and maximum value

in each dimension

© Copyright Ian D. Romanick 2009

4-November-2009

AABB Update

⇨ Translation is trivial
­ Rotation is problematic

⇨ Three common techniques:
­ Recalcuation
­ AABB of an AABB
­ Hill climbing

© Copyright Ian D. Romanick 2009

4-November-2009

AABB Update

⇨ Recalculation:
­ Transform source data, calculate new AABB

⇨ Advantages / disadvantages?

© Copyright Ian D. Romanick 2009

4-November-2009

AABB Update

⇨ Recalculation:
­ Transform source data, calculate new AABB

⇨ Advantages / disadvantages?
­ Creates a tight-fitting AABB
­ O(n) per transformation is probably much too slow

­ Can speed up by using only points on the convex hull

© Copyright Ian D. Romanick 2009

4-November-2009

AABB Update

⇨ Hill climbing:
­ Track the extreme points of the object
­ To update, check neighboring points for new extrema

⇨ Advantages / disadvantages?

© Copyright Ian D. Romanick 2009

4-November-2009

AABB Update

⇨ Hill climbing:
­ Track the extreme points of the object
­ To update, check neighboring points for new extrema

⇨ Advantages / disadvantages?
­ Creates a tight-fitting AABB
­ Average case performance is good

­ Requires precalculation of convex hull
­ Requires data structure to store connectivity amoung points

on hull

© Copyright Ian D. Romanick 2009

4-November-2009

AABB Update

⇨ AABB of AABB:
­ Calculate AABB of base orientation of object
­ Apply transformations to object and AABB
­ Calculate AABB of transformed AABB

⇨ Advantages / disadvantages?

© Copyright Ian D. Romanick 2009

4-November-2009

AABB Update

⇨ AABB of AABB:
­ Calculate AABB of base orientation of object
­ Apply transformations to object and AABB
­ Calculate AABB of transformed AABB

⇨ Advantages / disadvantages?
­ Creates a loose-fitting AABB
­ Very fast!

⇨ This is probably the most commonly used
technique

© Copyright Ian D. Romanick 2009

4-November-2009

Oriented Bounding Boxes

⇨ Arbitrarily oriented box that encloses the object
­ Can lead to much tighter bounding volume

⇨ How would you represent an OBB?

© Copyright Ian D. Romanick 2009

4-November-2009

Oriented Bounding Boxes

class obb_base_vectors {
 // Base point of box
 point base;

 // X, Y, and Z axes
 point axis[3];
};

© Copyright Ian D. Romanick 2009

4-November-2009

Oriented Bounding Boxes

class obb_basis_radius {
 // Radius in each direction
 point radius;

 // Transformation to the OBB's coordinate
 // system
 matrix basis;
};

© Copyright Ian D. Romanick 2009

4-November-2009

OBB Creation

⇨ One common method:
­ Calculate 3D convex hull

­ One of the OBB faces must be coplanar with a face of the
convex hull

­ For each face of the 3D convex hull:
­ Project points onto its plane
­ Calculate 2D convex hull
­ Use “rotating calipers” to find minimal bounding rectangle

­ This defines one face of the OBB

­ Calculate distance of farthest point from the convex hull face

­ Use the OBB with the smallest resulting volume

© Copyright Ian D. Romanick 2009

4-November-2009

OBB Creation

⇨ References:
­ http://cbloomrants.blogspot.com/2009/04/04-24-09-convex-hulls-and-obb.html

http://cbloomrants.blogspot.com/2009/04/04-24-09-convex-hulls-and-obb.html

© Copyright Ian D. Romanick 2009

4-November-2009

OBB Update

⇨ Trivial!
­ Apply transformation to the OBB's basis matrix

© Copyright Ian D. Romanick 2009

4-November-2009

Bounding Spheres

⇨ Sphere surrounding the object
­ Ideally it's the minimal sphere
­ Representation is trivial
­ Update is trivial

© Copyright Ian D. Romanick 2009

4-November-2009

Bounding Sphere Creation

⇨ Generating a good sphere is a non-trivial
exercise

­ Brute-force is O(n5)
­ Statistical methods can produce a good

approximation in O(n)
­ A recursive method can produce minimum sphere in

O(n), but a robust implementation is complex.
­ An iterative approach can get within 5% of minimum

in O(n), but has a higher constant factor.

© Copyright Ian D. Romanick 2009

4-November-2009

Bounding Sphere Creation

⇨ Generating a good sphere is a non-trivial
exercise

­ Brute-force is O(n5)
­ Statistical methods can produce a good

approximation in O(n)
­ A recursive method can produce minimum sphere in

O(n), but a robust implementation is complex.
­ An iterative approach can get within 5% of minimum

in O(n), but has a higher constant factor.

We won't talk about
these methods today

© Copyright Ian D. Romanick 2009

4-November-2009

Bounding Sphere Creation

⇨ Brute-force:
­ A plane is defined by 3 non-colinear points
­ A sphere is defined by 3 points on a plane and one

point not on the plane
­ i.e., a tetrahedron

­ Consider the sphere defined by all combinations of 4
non-coplanar points, keep the smallest that contains
all the points.

© Copyright Ian D. Romanick 2009

4-November-2009

Bounding Sphere Creation

⇨ Ritter's algorithm:
­ Given an initial guess that is too small, can find

bounding sphere within 10% of minimum
­ Easy to understand and easy to implement

­ I did a version in 68000 assembly language many years ago

© Copyright Ian D. Romanick 2009

4-November-2009

Bounding Sphere Creation

void bounding_sphere(Sphere &sphere, vector *p, unsigned num)
{
 float r_squared = sphere.radius * sphere.radius;

 for (unsigned i = 0; i < num; i++) {
 const vector d = p[i] – sphere.center;
 const float dist_squared = d.dot3(d);

 if (dist_squared > r_squared) {
 const float dist = sqrt(dist_squared);
 const float r = (sphere.radius + dist) / 2.0f;
 const float k = (r – sphere.radius) / dist;

 sphere.radius = r;
 sphere.center += d * k;
 r_squared = r * r;
 }
 }
}

© Copyright Ian D. Romanick 2009

4-November-2009

Bounding Sphere Creation

⇨ What's the big assumption?

© Copyright Ian D. Romanick 2009

4-November-2009

Bounding Sphere Creation

⇨ What's the big assumption?
­ That we have a good way to come up with an initial

sphere
­ The initial sphere must be a little bit too small
­ The better the initial sphere, the better the final sphere

© Copyright Ian D. Romanick 2009

4-November-2009

Bounding Sphere Creation

⇨ What's the big assumption?
­ That we have a good way to come up with an initial

sphere
­ The initial sphere must be a little bit too small
­ The better the initial sphere, the better the final sphere

⇨ Apply the algorithm iteratively
­ Generate a sphere from an AABB
­ Apply Ritter's algorithm
­ Shrink the output sphere
­ Apply again adding the points in random order

© Copyright Ian D. Romanick 2009

4-November-2009

AABB / Frustum Intersection

⇨ Test each corner of
the box. If all corners
are outside the
frustum, then box is
outside.

B
A

C

© Copyright Ian D. Romanick 2009

4-November-2009

AABB / Frustum Intersection

⇨ Test each corner of
the box. If all corners
are outside the
frustum, then box is
outside. Wrong!!!

⇨ If all corners are on
positive side of any
one plane, then the
box is outside.

B
A

C

© Copyright Ian D. Romanick 2009

4-November-2009

AABB / Frustum Intersection

⇨ Can we do better than testing all 8 corners?

© Copyright Ian D. Romanick 2009

4-November-2009

AABB / Frustum Intersection

⇨ Can we do better than testing all 8 corners?
­ Pick the “most positive” point and “most negative”

point relative to each plane
­ Call these the p-vertex and the n-vertex

­ Test just those points
­ If both are on the same side of the plane, then all of the

points must be on that same side

© Copyright Ian D. Romanick 2009

4-November-2009

AABB / Frustum Intersection

⇨ Finding p-vertex and n-vertex:
­ Look at the signs of the components of the plane's

normal
­ The signs determine which corner the normal points

towards
­ Example: If the normal signs are { +, +, - }, then the p-vertex

is { box.radius.x, box.radius.y, -box.radius.z }
­ The n-vertex is always the opposite corner

© Copyright Ian D. Romanick 2009

4-November-2009

AABB / Frustum Intersection

int frustum_aabb(Plane *planes, Aabb &aabb)
{
 bool intersect = false;
 for (unsigned i = 0; i < 6; i++) {
 vector vn =
 get_negative_far_point(planes[i], aabb);
 if (vn.dot3(planes[i].n) + planes[i].d > 0)
 return OUTSIDE;

 vector vp =
 get_positive_far_point(planes[i], aabb);
 if (vp.dot3(planes[i].n) + planes[i].d > 0)
 intersect = true;
 }

 return (intersect) ? INTERSECTING : INSIDE;
}

© Copyright Ian D. Romanick 2009

4-November-2009

AABB / Frustum Intersection

⇨ References:
­ http://www.ce.chalmers.se/~uffe/vfc_bbox.pdf
­ http://www.ce.chalmers.se/~uffe/vfc.pdf

http://www.ce.chalmers.se/~uffe/vfc_bbox.pdf
http://www.ce.chalmers.se/~uffe/vfc.pdf

© Copyright Ian D. Romanick 2009

4-November-2009

OBB / Frustum Intersection

⇨ Same!
­ Transform the frustum to the coordinate space of the

OBB
­ This effectively transforms the OBB to an AABB

© Copyright Ian D. Romanick 2009

4-November-2009

BV Hierarchies

⇨ Bounding volume containing bounding volumes
containing bounding volumes, etc.

­ Arrange the BVs in a tree-like structure
­ Sibling BVs may occupy overlapping space

© Copyright Ian D. Romanick 2009

4-November-2009

BV Hierarchies

⇨ Parent-child property:
­ Each parent BV

contains its child BVs
­ Not required, but

makes somethings
easier

­ Parent BV need only
contain objects in child
BVs

­ Top level circle (right)
contains all boxes but not
all sub-circles.

© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BVH Characteristics

⇨ Nodes within a subtree should be “near” each
other

­ Farther down the tree, the nodes should be closer

© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BVH Characteristics

⇨ Nodes within a subtree should be “near” each
other

­ Farther down the tree, the nodes should be closer

⇨ Each node should be tight-fitting
­ Just like non-hierarchical bounding volumes

© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BVH Characteristics

⇨ Nodes within a subtree should be “near” each
other

­ Farther down the tree, the nodes should be closer

⇨ Each node should be tight-fitting
­ Just like non-hierarchical bounding volumes

⇨ Nodes near the root are more important than
nodes near the leaves

­ Trivial reject (or trivial accept) as many objects as
possible as with as little work as possible

© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BVH Characteristics

⇨ Minimal overlap of sibling nodes
­ Overlap can force traversal of multiple subtrees

© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BVH Characteristics

⇨ Minimal overlap of sibling nodes
­ Overlap can force traversal of multiple subtrees

⇨ Hierarchy should be balance w.r.t. node
structure and content

­ Balanced structure just like regular search trees
­ Balanced content (i.e., number of objects in nodes)

allows earlier trivial rejection

© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BVH Characteristics

⇨ Minimal overlap of sibling nodes
­ Overlap can force traversal of multiple subtrees

⇨ Hierarchy should be balance w.r.t. node
structure and content

­ Balanced structure just like regular search trees
­ Balanced content (i.e., number of objects in nodes)

allows earlier trivial rejection

⇨ Worst-case performance should not be much
worse than average-case performance

­ Avoid stuttering framerates

© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BVH Characteristics

⇨ Generate without human intervention
­ Automatically generate without artist or programmer

guiding the process

© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BVH Characteristics

⇨ Generate without human intervention
­ Automatically generate without artist or programmer

guiding the process

⇨ Memory overhead should be low
­ Just like non-hierarchical bounding volumes

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation

⇨ Three common strategies:
­ Insertion
­ Top-down
­ Bottom-up

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Top-Down

⇨ Start with single BV and recursively subdivide
­ Easy to implement
­ Doesn't result in optimal BVH

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Top-Down

BVHNode *build_BVH(Entity *e, int num_e)
{
 BoundingVolume *bv = new BoundingVolume(e, num_e);
 BVHNode *node = new BVHNode(bv);

 if (num_entity < threshold) {
 node­>is_leaf = true;
 } else {
 int first_half_count = divide_entities(e, num_e);
 node­>child[0] = build_BVH(& e[0],
 first_half_count);
 node­>child[1] = build_BVH(& e[first_half_count],
 num_e ­ first_half_count);
 }

 return node;
}

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Top-Down

⇨ The key element is divide_entities
­ As coded, assumes each entity is in exactly one set
­ Not the only strategy

⇨ How do we decide where to divide the set?

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Top-Down

⇨ Median-cut is a common strategy
­ Select an axis

­ Longest axis of the BV being partitioned is a common choice

­ Project all entities onto this axis
­ Sort projected entities by position
­ First half goes in the first node, second half goes in

the second node

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Top-Down

⇨ Median-cut is easy to implement, but it poorly
partitions some sets:

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Top-Down

⇨ Median-cut is easy to implement, but it poorly
partitions some sets:

Too much empty
space

Too much overlap

Unbalanced node
sizes

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Top-Down

⇨ Other heuristics:
­ Minimize sum of volumes
­ Minimize largest volume
­ Minimize overlap volume
­ Maximize child node separation

⇨ No single heuristic is perfect
­ Implement a primary heuristic and adjust choice if

secondary heuristic scores very poorly
­ Repeat for all heuristics or until a heuristic passes

without adjustment

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Top-Down

⇨ Infinite number of possible partition axes
­ Similar to the problem of selecting the basis of OBB

⇨ Common choices:
­ Aligned axes of BV
­ Axes of parent BV
­ Axis through most distant points
­ Axis of greatest variance

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Top-Down

⇨ Once an axis is selected, a split-point must also
be selected

­ Median of projected object centroids
­ Mean of projected object centroids
­ Median of projected BV extents
­ Pick best of n evenly spaced points along axis

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Bottom-Up

⇨ Repeatedly merge individual BVs:
­ Create a BV for each object

­ Store in an “active” BV list

­ Select 2 or more BVs to merge
­ Remove old BVs from active list
­ Add new, merged BV to active list

­ Lather, rinse, repeat until only one BV remains

⇨ Tradeoffs:
­ Often much, much slower
­ More complex implement
­ Usually results in much better hierarchies

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Bottom-Up

⇨ The key element is the algorithm for node
selection

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Bottom-Up

⇨ The key element is the algorithm for node
selection

⇨ Obvious, brute-force approach: search active list
for pair of nodes that form least-volume BV

­ O(n2) for the search which is repeated (n-1) times...
O(n3) for the lose. :(

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Bottom-Up

⇨ The key element is the algorithm for node
selection

⇨ Obvious, brute-force approach: search active list
for pair of nodes that form least-volume BV

­ O(n2) for the search which is repeated (n-1) times...
O(n3) for the lose. :(

Other heuristics
can also be used

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Bottom-Up

⇨ Use the brute-force method as basis for an
improved method:

­ For each node, determine the best node for it to pair
with

­ Store both nodes with heuristic score in a priority queue

­ Loop, removing the head from the queue:
­ Validate stored size

­ May have changed if either node was already removed

­ If size is still smallest, calculate pairing for new node and add
to queue

­ Otherwise, re-insert the original node in the queue

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Insertion

⇨ Find location to insert node with least cost
­ Heuristic is usually along the lines of volume added to

BV and all parent BVs
­ Large objects will be added near the root, small

objects will be added near the leaves
­ Far away (isolated) objects will be added near the root

© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Insertion

⇨ Common insertion strategies:
­ Depth first:

­ At each step, pick the child with the least cost.
­ Recur on its children
­ Search cost is O(ln n) with n searches → O(n ln n)

­ Guided breadth first:
­ Keep track of cost at each visited depth, recur on branch with

current best cost
­ Worst-case search cost is O(n) → O(n2)

­ Average case is still O(n ln n)

­ Results in much better tree
­ Uses global information instead of just local information

© Copyright Ian D. Romanick 2009

4-November-2009

Next week...

⇨ Texture mapping, part 1

© Copyright Ian D. Romanick 2009

4-November-2009

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

