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VGP351 – Week 5

⇨ Agenda:
­ Quiz #2
­ Bounding volumes

­ Axis-aligned bounding boxes
­ Oriented bounding boxes
­ Bounding spheres

­ BV hierarchies
­ Portal culling
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Bounding Volumes

⇨ From Wikipedia:
“...a bounding volume for a set of objects is a closed 
volume that completely contains the union of the 
objects in the set.”

⇨ Why is this useful?
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Bounding Volumes

⇨ From Wikipedia:
“...a bounding volume for a set of objects is a closed 
volume that completely contains the union of the 
objects in the set.”

⇨ Why is this useful?
­ Can represent complex geometry that would be 

expensive to test with an approximation that is much 
cheaper to test

­ Visibility, collision detection, etc.
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Desirable BV Characteristics

⇨ Inexpensive intersection test
­ BVs are used instead of source geometry to speed up 

trivial rejection (or trivial acceptance) tests
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Desirable BV Characteristics

⇨ Inexpensive intersection test
­ BVs are used instead of source geometry to speed up 

trivial rejection (or trivial acceptance) tests

⇨ Tight fitting to source geometry
­ If the BV is a poor fit, tests between BVs may result in 

false positives or false negatives
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Desirable BV Characteristics

⇨ Inexpensive intersection test
­ BVs are used instead of source geometry to speed up 

trivial rejection (or trivial acceptance) tests

⇨ Tight fitting to source geometry
­ If the BV is a poor fit, tests between BVs may result in 

false positives or false negatives

⇨ Inexpensive to compute
­ If the BV is too expensive to compute, the expense of 

creating it may cancel the speed-up that it provides
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Desirable BV Characteristics

⇨ Easy to transform
­ If the object moves, its BV needs to move.  If moving 

the BV is too expensive, it may cancel out the speed-
up.
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Desirable BV Characteristics

⇨ Easy to transform
­ If the object moves, its BV needs to move.  If moving 

the BV is too expensive, it may cancel out the speed-
up.

⇨ Inexpensive to store
­ If the BV requires too much space to store or too 

much time to access, it can negatively impact 
performance.
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Axis-Aligned Bounding Box

⇨ AABB is probably the most common bounding 
volume

­ Just an n-dimensional box with sides parallel to the 
principle axes that encloses all the points
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Axis-Aligned Bounding Box
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Axis-Aligned Bounding Box

⇨ Three common representations
­ Easy to translate between them
­ Which is used depends on the source data and the 

usage of the BV
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Axis-Aligned Bounding Box

class aabb_min_max {
    // Points such that for every point P in the
    // object:
    //    (min.x <= P.x <= max.x)
    //    && (min.y <= P.y <= max.y)
    //    && (min.z <= P.z <= max.z)
    point min;
    point max;
};



© Copyright Ian D. Romanick 2009

4-November-2009

Axis-Aligned Bounding Box

class aabb_min_diameter {
    // Points such that for every point P in the
    // object:
    //    (min.x <= P.x)
    //    && (min.y <= P.y)
    //    && (min.z <= P.z)
    point min;

    // Dimensions of the box in each direction
    point diameter;
};
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Axis-Aligned Bounding Box

class aabb_center_radius {
    // Center of the bounding box
    point center;

    // Radius of the box in each direction
    point radius;
};
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AABB Creation

⇨ Trivial O(n) problem:
­ Scan all points tracking minimum and maximum value 

in each dimension
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AABB Update

⇨ Translation is trivial
­ Rotation is problematic

⇨ Three common techniques:
­ Recalcuation
­ AABB of an AABB
­ Hill climbing
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AABB Update

⇨ Recalculation:
­ Transform source data, calculate new AABB

⇨ Advantages / disadvantages?
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AABB Update

⇨ Recalculation:
­ Transform source data, calculate new AABB

⇨ Advantages / disadvantages?
­ Creates a tight-fitting AABB
­ O(n) per transformation is probably much too slow

­ Can speed up by using only points on the convex hull
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AABB Update

⇨ Hill climbing:
­ Track the extreme points of the object
­ To update, check neighboring points for new extrema

⇨ Advantages / disadvantages?
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AABB Update

⇨ Hill climbing:
­ Track the extreme points of the object
­ To update, check neighboring points for new extrema

⇨ Advantages / disadvantages?
­ Creates a tight-fitting AABB
­ Average case performance is good

­ Requires precalculation of convex hull
­ Requires data structure to store connectivity amoung points 

on hull
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AABB Update

⇨ AABB of AABB:
­ Calculate AABB of base orientation of object
­ Apply transformations to object and AABB
­ Calculate AABB of transformed AABB

⇨ Advantages / disadvantages?
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AABB Update

⇨ AABB of AABB:
­ Calculate AABB of base orientation of object
­ Apply transformations to object and AABB
­ Calculate AABB of transformed AABB

⇨ Advantages / disadvantages?
­ Creates a loose-fitting AABB
­ Very fast!

⇨ This is probably the most commonly used 
technique



© Copyright Ian D. Romanick 2009

4-November-2009

Oriented Bounding Boxes

⇨ Arbitrarily oriented box that encloses the object
­ Can lead to much tighter bounding volume

⇨ How would you represent an OBB?
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Oriented Bounding Boxes

class obb_base_vectors {
    // Base point of box
    point base;

    // X, Y, and Z axes
    point axis[3];
};
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Oriented Bounding Boxes

class obb_basis_radius {
    // Radius in each direction
    point radius;

    // Transformation to the OBB's coordinate 
    // system
    matrix basis;
};
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OBB Creation

⇨ One common method:
­ Calculate 3D convex hull

­ One of the OBB faces must be coplanar with a face of the 
convex hull

­ For each face of the 3D convex hull:
­ Project points onto its plane
­ Calculate 2D convex hull
­ Use “rotating calipers” to find minimal bounding rectangle

­ This defines one face of the OBB

­ Calculate distance of farthest point from the convex hull face

­ Use the OBB with the smallest resulting volume
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OBB Creation

⇨ References:
­ http://cbloomrants.blogspot.com/2009/04/04-24-09-convex-hulls-and-obb.html

http://cbloomrants.blogspot.com/2009/04/04-24-09-convex-hulls-and-obb.html
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OBB Update

⇨ Trivial!
­ Apply transformation to the OBB's basis matrix
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Bounding Spheres

⇨ Sphere surrounding the object
­ Ideally it's the minimal sphere
­ Representation is trivial
­ Update is trivial
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Bounding Sphere Creation

⇨ Generating a good sphere is a non-trivial 
exercise

­ Brute-force is O(n5)
­ Statistical methods can produce a good 

approximation in O(n)
­ A recursive method can produce minimum sphere in 

O(n), but a robust implementation is complex.
­ An iterative approach can get within 5% of minimum 

in O(n), but has a higher constant factor.
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Bounding Sphere Creation

⇨ Generating a good sphere is a non-trivial 
exercise

­ Brute-force is O(n5)
­ Statistical methods can produce a good 

approximation in O(n)
­ A recursive method can produce minimum sphere in 

O(n), but a robust implementation is complex.
­ An iterative approach can get within 5% of minimum 

in O(n), but has a higher constant factor.

We won't talk about 
these methods today
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Bounding Sphere Creation

⇨ Brute-force:
­ A plane is defined by 3 non-colinear points
­ A sphere is defined by 3 points on a plane and one 

point not on the plane
­ i.e., a tetrahedron

­ Consider the sphere defined by all combinations of 4 
non-coplanar points, keep the smallest that contains 
all the points.
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Bounding Sphere Creation

⇨ Ritter's algorithm:
­ Given an initial guess that is too small, can find 

bounding sphere within 10% of minimum
­ Easy to understand and easy to implement

­ I did a version in 68000 assembly language many years ago
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Bounding Sphere Creation

void bounding_sphere(Sphere &sphere, vector *p, unsigned num)
{
    float r_squared = sphere.radius * sphere.radius;

    for (unsigned i = 0; i < num; i++) {
        const vector d = p[i] – sphere.center;
        const float dist_squared = d.dot3(d);

        if (dist_squared > r_squared) {
            const float dist = sqrt(dist_squared);
            const float r = (sphere.radius + dist) / 2.0f;
            const float k = (r – sphere.radius) / dist;

            sphere.radius = r;
            sphere.center += d * k;
            r_squared = r * r;
        }
    }
}
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Bounding Sphere Creation

⇨ What's the big assumption?
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Bounding Sphere Creation

⇨ What's the big assumption?
­ That we have a good way to come up with an initial 

sphere
­ The initial sphere must be a little bit too small
­ The better the initial sphere, the better the final sphere
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Bounding Sphere Creation

⇨ What's the big assumption?
­ That we have a good way to come up with an initial 

sphere
­ The initial sphere must be a little bit too small
­ The better the initial sphere, the better the final sphere

⇨ Apply the algorithm iteratively
­ Generate a sphere from an AABB
­ Apply Ritter's algorithm
­ Shrink the output sphere
­ Apply again adding the points in random order
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AABB / Frustum Intersection

⇨ Test each corner of 
the box.  If all corners 
are outside the 
frustum, then box is 
outside.

B
A

C
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AABB / Frustum Intersection

⇨ Test each corner of 
the box.  If all corners 
are outside the 
frustum, then box is 
outside.  Wrong!!!

⇨ If all corners are on 
positive side of any 
one plane, then the 
box is outside.

B
A

C
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AABB / Frustum Intersection

⇨ Can we do better than testing all 8 corners?
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AABB / Frustum Intersection

⇨ Can we do better than testing all 8 corners?
­ Pick the “most positive” point and “most negative” 

point relative to each plane
­ Call these the p-vertex and the n-vertex

­ Test just those points
­ If both are on the same side of the plane, then all of the 

points must be on that same side
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AABB / Frustum Intersection

⇨ Finding p-vertex and n-vertex:
­ Look at the signs of the components of the plane's 

normal
­ The signs determine which corner the normal points 

towards
­ Example: If the normal signs are { +, +, - }, then the p-vertex 

is { box.radius.x, box.radius.y, -box.radius.z }
­ The n-vertex is always the opposite corner
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AABB / Frustum Intersection

int frustum_aabb(Plane *planes, Aabb &aabb)
{
    bool intersect = false;
    for (unsigned i = 0; i < 6; i++) {
        vector vn = 
          get_negative_far_point(planes[i], aabb);
        if (vn.dot3(planes[i].n) + planes[i].d > 0)
            return OUTSIDE;

        vector vp = 
          get_positive_far_point(planes[i], aabb);
        if (vp.dot3(planes[i].n) + planes[i].d > 0)
            intersect = true;
    }

    return (intersect) ? INTERSECTING : INSIDE;
}
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AABB / Frustum Intersection

⇨ References:
­ http://www.ce.chalmers.se/~uffe/vfc_bbox.pdf
­ http://www.ce.chalmers.se/~uffe/vfc.pdf

http://www.ce.chalmers.se/~uffe/vfc_bbox.pdf
http://www.ce.chalmers.se/~uffe/vfc.pdf
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OBB / Frustum Intersection

⇨ Same!
­ Transform the frustum to the coordinate space of the 

OBB
­ This effectively transforms the OBB to an AABB
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BV Hierarchies

⇨ Bounding volume containing bounding volumes 
containing bounding volumes, etc.

­ Arrange the BVs in a tree-like structure
­ Sibling BVs may occupy overlapping space
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BV Hierarchies

⇨ Parent-child property:
­ Each parent BV 

contains its child BVs
­ Not required, but 

makes somethings 
easier

­ Parent BV need only 
contain objects in child 
BVs

­ Top level circle (right) 
contains all boxes but not 
all sub-circles.
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Desirable BVH Characteristics

⇨ Nodes within a subtree should be “near” each 
other

­ Farther down the tree, the nodes should be closer



© Copyright Ian D. Romanick 2009

4-November-2009

Desirable BVH Characteristics

⇨ Nodes within a subtree should be “near” each 
other

­ Farther down the tree, the nodes should be closer

⇨ Each node should be tight-fitting
­ Just like non-hierarchical bounding volumes
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Desirable BVH Characteristics

⇨ Nodes within a subtree should be “near” each 
other

­ Farther down the tree, the nodes should be closer

⇨ Each node should be tight-fitting
­ Just like non-hierarchical bounding volumes

⇨ Nodes near the root are more important than 
nodes near the leaves

­ Trivial reject (or trivial accept) as many objects as 
possible as with as little work as possible
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Desirable BVH Characteristics

⇨ Minimal overlap of sibling nodes
­ Overlap can force traversal of multiple subtrees
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Desirable BVH Characteristics

⇨ Minimal overlap of sibling nodes
­ Overlap can force traversal of multiple subtrees

⇨ Hierarchy should be balance w.r.t. node 
structure and content

­ Balanced structure just like regular search trees
­ Balanced content (i.e., number of objects in nodes) 

allows earlier trivial rejection
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Desirable BVH Characteristics

⇨ Minimal overlap of sibling nodes
­ Overlap can force traversal of multiple subtrees

⇨ Hierarchy should be balance w.r.t. node 
structure and content

­ Balanced structure just like regular search trees
­ Balanced content (i.e., number of objects in nodes) 

allows earlier trivial rejection

⇨ Worst-case performance should not be much 
worse than average-case performance

­ Avoid stuttering framerates
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Desirable BVH Characteristics

⇨ Generate without human intervention
­ Automatically generate without artist or programmer 

guiding the process
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Desirable BVH Characteristics

⇨ Generate without human intervention
­ Automatically generate without artist or programmer 

guiding the process

⇨ Memory overhead should be low
­ Just like non-hierarchical bounding volumes
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BVH Creation

⇨ Three common strategies:
­ Insertion
­ Top-down
­ Bottom-up
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BVH Creation – Top-Down

⇨ Start with single BV and recursively subdivide
­ Easy to implement
­ Doesn't result in optimal BVH
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BVH Creation – Top-Down

BVHNode *build_BVH(Entity *e, int num_e)
{
    BoundingVolume *bv = new BoundingVolume(e, num_e);
    BVHNode *node = new BVHNode(bv);

    if (num_entity < threshold) {
        node­>is_leaf = true;
    } else {
        int first_half_count = divide_entities(e, num_e);
        node­>child[0] = build_BVH(& e[0],
            first_half_count);
        node­>child[1] = build_BVH(& e[first_half_count],
            num_e ­ first_half_count);
    }

    return node;
}
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BVH Creation – Top-Down

⇨ The key element is divide_entities
­ As coded, assumes each entity is in exactly one set
­ Not the only strategy

⇨ How do we decide where to divide the set?
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BVH Creation – Top-Down

⇨ Median-cut is a common strategy
­ Select an axis

­ Longest axis of the BV being partitioned is a common choice

­ Project all entities onto this axis
­ Sort projected entities by position
­ First half goes in the first node, second half goes in 

the second node
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BVH Creation – Top-Down

⇨ Median-cut is easy to implement, but it poorly 
partitions some sets:
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BVH Creation – Top-Down

⇨ Median-cut is easy to implement, but it poorly 
partitions some sets:

Too much empty 
space

Too much overlap

Unbalanced node 
sizes
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BVH Creation – Top-Down

⇨ Other heuristics:
­ Minimize sum of volumes
­ Minimize largest volume
­ Minimize overlap volume
­ Maximize child node separation

⇨ No single heuristic is perfect
­ Implement a primary heuristic and adjust choice if 

secondary heuristic scores very poorly
­ Repeat for all heuristics or until a heuristic passes 

without adjustment



© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Top-Down

⇨ Infinite number of possible partition axes
­ Similar to the problem of selecting the basis of OBB

⇨ Common choices:
­ Aligned axes of BV
­ Axes of parent BV
­ Axis through most distant points
­ Axis of greatest variance



© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Top-Down

⇨ Once an axis is selected, a split-point must also 
be selected

­ Median of projected object centroids
­ Mean of projected object centroids
­ Median of projected BV extents
­ Pick best of n evenly spaced points along axis
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BVH Creation – Bottom-Up

⇨ Repeatedly merge individual BVs:
­ Create a BV for each object

­ Store in an “active” BV list

­ Select 2 or more BVs to merge
­ Remove old BVs from active list
­ Add new, merged BV to active list

­ Lather, rinse, repeat until only one BV remains

⇨ Tradeoffs:
­ Often much, much slower
­ More complex implement
­ Usually results in much better hierarchies
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BVH Creation – Bottom-Up

⇨ The key element is the algorithm for node 
selection



© Copyright Ian D. Romanick 2009

4-November-2009

BVH Creation – Bottom-Up

⇨ The key element is the algorithm for node 
selection

⇨ Obvious, brute-force approach: search active list 
for pair of nodes that form least-volume BV

­ O(n2) for the search which is repeated (n-1) times... 
O(n3) for the lose. :(
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BVH Creation – Bottom-Up

⇨ The key element is the algorithm for node 
selection

⇨ Obvious, brute-force approach: search active list 
for pair of nodes that form least-volume BV

­ O(n2) for the search which is repeated (n-1) times... 
O(n3) for the lose. :(

Other heuristics 
can also be used
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BVH Creation – Bottom-Up

⇨ Use the brute-force method as basis for an 
improved method:

­ For each node, determine the best node for it to pair 
with

­ Store both nodes with heuristic score in a priority queue

­ Loop, removing the head from the queue:
­ Validate stored size

­ May have changed if either node was already removed

­ If size is still smallest, calculate pairing for new node and add 
to queue

­ Otherwise, re-insert the original node in the queue
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BVH Creation – Insertion

⇨ Find location to insert node with least cost
­ Heuristic is usually along the lines of volume added to 

BV and all parent BVs
­ Large objects will be added near the root, small 

objects will be added near the leaves
­ Far away (isolated) objects will be added near the root
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BVH Creation – Insertion

⇨ Common insertion strategies:
­ Depth first:

­ At each step, pick the child with the least cost.
­ Recur on its children
­ Search cost is O(ln n) with n searches → O(n ln n)

­ Guided breadth first:
­ Keep track of cost at each visited depth, recur on branch with 

current best cost
­ Worst-case search cost is O(n) → O(n2)

­ Average case is still O(n ln n)

­ Results in much better tree
­ Uses global information instead of just local information
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Next week...

⇨ Texture mapping, part 1
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Legal Statement

This work represents the view of the authors and does not necessarily 
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.
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